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Plasticity conditions (finite relation) for thin shells using the 
Kirchhoff-Love hypothesis and von Mises’ plasticity criterion were con- 
sidered in [l 1. Plasticity conditions for the axisyametrically-loaded 
cylindrical shell corresponding to the maximum shear-stress criterion 
were given in [ 2.3 1 and the same for the shells of revolution in [ 4 1. 
In special cases approximate plasticity conditions are usually introduced 
which are obtained from approximating the above-mentioned exact conditions 
[ 2.3.5-7 1, or from other considerations, [ 8.9 1. 

Using the extremum principles obtained for the three-dimensional 
rigid-plastic continuum, one can derive a sufficiently simple approximate 
condition for a general case. It appears thereby that such a general 
approximate condition contains the approximate plasticity conditions in- 
troduced by the above-mentioned authors. 

1. We shall use the following relationships expressing the stresses 
and moments in a shell: 
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Ml = \ qzdz, Mz = \ ozzdz, Ml2 = \ olzzdz . 
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Clearly (1.1) is applicable if the ratio of the thickness of the shell R 
to the characteristic radius of curvature is small in comparison with 
unity. In the future we shall limit ourselves to such cases only. Let us 
consider now an element of a Plate, whose sides are of unit length, load- 
ed along its edges as shown in Fig. 1. As a statically admissible stress 
field for a given element we take 
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FIG. 1. 

TI 4M1 
aI = x f h2 sign 2, 

TIZ 4M1a 
al2 = h + 7 sign 2 

Ta 4Mz 
02= x+h,signz, %=~z3=~3=O (1.2) 

(The z-coordinate is counted from the middle surface along a local 
normal. 1 

Introducing these magnitudes into von Mises’ plasticity condition we 
obtain 

(al- a# + (aa - 0.P + (03 - 0 + 6 (a1w2 + a1sz + ca2) = 20: (1.2a) 

We finally deduce relationships resulting from the lower bound estimate 

P,w+p,a+21Pt,I=1 (1.3) 

where P, * p,*. P,” , are quadratic and bilinear forms [l I 

P,S = tp - hh + Q + 3t1ax 

Pma = ml2 - mlm2 + m? -I- 3m1s2 

2P tm = 2tlml + 2tzmz - tIma - tzml + 6tlgxla 

(1.4) 

Thereby 

Tl MI 
T, = ha,, 

h% 
tl=g7, ml= - etc. , 

8 Ma 
M,= b 

4 (I.51 

From the inequality PtPI > 1 Pt,l, indicated in [ 1 1, it follows that 
the replacement of (1.31 by the relation 

Pt2 + P,2 + 2P,P, = 1 (1.6) 

leads to a lower bound of the carrying capacity. 

In the P,P, plane (Fig. 2) the condition (1.61 corresponds to a 
straight line AB. 

2. We use now the well-known minimum properties [ 10 1 of the functional 

LT,$HdV-\ (x,u + y,v + Z,,w) dS 
V i3 

(2.1) 

where 



532 V.I. Aotcnbl iua 

.: 

H=1/;[&-E .a)2 + (Es- Ed2 + Es - Eda + ; (r122+ ~a324 rls12)I 2 (2.2) 

(the second term in (2.1) expresses the intensity of the given external 
forces). Consider now the following kinematically admissible field of 
velocity, which corresponds to a uniformly deformed state: 

El=eh E2=e2, Es = - (51 + 52), 712 = 7, -ql3 = 7ja3 = 0 (2.3) 

Thus, (2.1) becomes 

J+ ela + w2 + es* + fya - (he1 + w2 + h27) (2.4) 

Determining the parameters el, c2 and y from 

we find 

2e2 + el la=+ I/ela+eleg+eaa+k 7% 

1 
ha = yp 

7 

ela+ wa + eaa + $ +fa 

(2.5) 

Elimination of the ratios al/y. en/y from (2.5) leads to the plasti- 

city condition P, 

t1a - tits + taa + 3t1,s = Pt = 1 (2.6) ’ a I,__ 

If, however, instead of (2.3) the strain rates are 
given in the form 

EL 
h= 2x1, Ea =2x2. Es= -((51+ Es). ?13=%2=0 ’ 

fl tp 
%a = 20, 

I' 

we 

iS 

It 

(2.7) 
obtain the plasticity condition 

FIG. 2. 

mla- mlma + mla + 3m,aar P,” = 1 

Thus, the plasticity condition based on the upper-bound approximation* 
expressed in the Pt - P, plane (Pig. 2) by the sides of the square MB. 

is then natural to take as an approximate plasticity condition some 

l Notice that the given kinematically-admissible fields in the form of 
a sum of (2.3) and (2.7) would lead to the plasticitv condition 11 I. 
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curve located between the lower bound AB and the upper bound MB. The 
simplest assumption then will be 

pta+pma= 1 (2.9) 

which corresponds to the circular arc AB. 

3. We shall consider the condition (2.9) in greater detail. For the 
membrane (momentless) and for the pure bending states of stress, the 
upper and lower-bound evaluations found in Sections 1 and 2, coincide 
(points A, B in Fig. 2.) In these cases the solution (2.9) is identical 
with the plasticity condition presented in [ 1 1. 

For the axisymmetrically loaded cylindrical shell (in the absence of 
the axial force) we have 

t1= t12 = 0, 
1 

m2=-ml, 
2 mr2=0 

The expression (2.9) has the form 

which again coincides with the limit relationship used for the solution 
of this problem in [ 1 ] . Let, for the axisymmetrical deformations of the 
shells of revolution 

Pm2 = m2 = ml2 -- mlm2 + m22 (3.2) 

The plasticity condition 

We use a traditional method 

where 

(2.9) is 

t2 + m2 = 1 

of piecewise approximation 

(3.2) 

d z 7, m=p . (3.3) 

Here, instead of (3.2). we obtain 

72 + p2 I= 1 (3.5) 

The next step consists of replacing a circular arc (3.5) by a circum- 
scribed or inscribed polygon or a square. 

The obtained piecewise linear plasticity condition coincides with the 
condition developed In [ 7,ll I, where it was assumed in addition, that 
n2 = 0. The relationships (3.4) and (3.6) include the plasticity square 
for the axisymmetrically and axially loaded cylindrical shell. The axial 
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force was introduced in [ 3 I and in a series of other works. 

In conclusion, we note that the energy theorems obtained in t9 1 for 
a somewhat different plasticity condition can be easily extended to the 
plasticity condition expressed by (3.2). 
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